Screen Space Classification for Efficient Deferred Shading

Neil HutchinsonBalor Knight, Matthew Ritchie, George Parrish, deyeMoore

Disney Interactive Studios

(@ TS

Introduction

Deferred shading is an increasingly popular teammifpr videc
game rendering. In the standard implementatiorcangtry pas
writes depths, normals aradher properties to a geometry bui
(G-buffer) before a lighting pass is applied as a estrepact
operation. Deferred shading is often combined wdgferred
shadowing where the occlusion values due to omaae lights
are gathered in a screen spatedeow buffer. The univers
application of complex shaders to the entire screering the
shadow and light passes of these techniques carilbede to pooi
performance. A more optimal approach would takedediht
shading paths for different parts of tkeene. For example v
would prefer to only apply expensive shadow filigrito known
shadow edges. However this typically involves thee wf
dynamic branches within shaders which can lead ¢or
performance on current video game shading hard

[Swoboda 2009] proposes using tBgnergistic Processing Ur
(SPU) of Sony’s PlayStati6n3 to categorize areas of the scr
with the aim of increasing renderiedficiency in post processir
effects such as depth of field. [Moore, Jefferi€@ P propose
using screen space buffers to classify the screen amyato
optimizeMSAA deferred shading and deferred shadow rende
We extend these works to provide a general framlefaorscreer
classification. We introduce a method ff@composing tt screen
into tiles and define a number of useful tlassification criteri
We show how this approach can be userkduce thcomplexity
of the lighting pass in deferred shading and tanupe afurther
range of renderingnd post processing effet

We describe how our approachas been implemented
Split/Seconda major racing game developed at DisneBlack
Rock StudioWe provide details of thénplementation forthe
Microsoft XboX® 360 and SonyPlayStatio® 3 hardware
platforms.

Our Approach

In our approach we divide the screen into tiles. €ach tile we
aim to apply lighting shaders that contain the minin locally
required complexity. To achieve this we first applyull screer
classification pass which determines which comptmef our
lighting calculation are required ireach screen tile. Th
classification pass can be carried asing either the GPU or tt
CPU or a combination of the twdVe use palette of screen

Copyright is held by the author / owner(s).
SIGGRAPH 2010, Los Angeles, California, July 25 — 29, 2010.
ISBN 978-1-4503-0210-4/10/0007

w . it Ea 7
pe N B et
i it =

" © : (d)

Figure 1: (a) Final rendered image, (lmft$hadov classification, (c) Sky classification, (d) MSAAgeclasification zoomed to show tile structure.

attributes from which the classification pass dsleccombinatiol
for each tile. In our example case the attributekide but are not
limited to: “sky”, “MSAA edg¢’, “sun-facing”, and “soft shadow
edge” The presence of these attributes iny tile can be
determined by analyzinghe C-buffer and the screen space
deferred shadow mask.

For each tile the collectestreen attributes acombined to create
a shader ID. This determines the shathat will be used to
process théle during the lighting pas The maximum number of
shades used in the lighting pe is 2" wheren is the total number
of screen attributeszor largen combinatorial complexity can be
avoidedby grouping our screen attributes and defining ntbam
one pass per tilén our example w use 8 screen attributes so that
the shader ID fitgonveniently into an-bit render target channel.
The $aders themselves can be generated b-processing an
ubershader during shader compilati

Once the shader IDof each tile has been calculated we gen
an index buffer with which to submit single draw call for each
shaderfound in our scene. In our implementation this inbaffer
generation phase is cil out on the CPU a synchronized with
the GPU submission and render

The optimum tile size ttrade off average tile complexity anst
vertexcost can vary according hardware and scene complexity.
For Split/'Secondve found the a tile size of 4x4 pixels gave a
good balanceVertex processing cc is further reduced by a
simple aggregation @fdjacent tiles with the same shader

We have adapted thtechnique forour different target hardware
platforms On the PlayStatic® 3 we move work away from the
GPU by carrying out part of thclassification pass on the SPU.
The SPU is also usdd generat the final index buffers. On the
Xbox® 360 we make use of the Procedural Synthesis fe
(XPS) tooptimally synchronize the CPU submission of draWsc
with the GPU.

References

SwoBoDA, M. 2009. Deferred Lighting and Post
Processing on PlayStation®3Game Developers
Conference 2009.

MOORE, J., EFFERIES,D. 2009. Rendering Techniques in
Split/Second.Advanced Re-Time Rendering in 3D
Graphics and GamesSIGGRAPH 2009.



