
Copyright is held by the author / owner(s).
SIGGRAPH 2010, Los Angeles, California, July 25 – 29, 2010.
ISBN 978-1-4503-0210-4/10/0007

Screen Space Classification

Neil Hutchinson, Balor Knight, Matthew Ritchie, George Parrish, Jeremy Moore

(a)
Figure 1: (a) Final rendered image, (b) Soft shadow

Introduction

Deferred shading is an increasingly popular technique for video
game rendering. In the standard implementation a geometry pass
writes depths, normals and other properties to a geometry buffer
(G-buffer) before a lighting pass is applied as a screen space
operation. Deferred shading is often combined with deferred
shadowing where the occlusion values due to one or more lights
are gathered in a screen space shadow buffer. The universal
application of complex shaders to the entire screen during the
shadow and light passes of these techniques can contribute to poor
performance. A more optimal approach would take different
shading paths for different parts of the scene. For example we
would prefer to only apply expensive shadow filtering to known
shadow edges. However this typically involves the use of
dynamic branches within shaders which can lead to poor
performance on current video game shading hardware.

[Swoboda 2009] proposes using the Synergistic Processing Unit
(SPU) of Sony’s PlayStation® 3 to categorize areas of the screen
with the aim of increasing rendering efficiency in post processing
effects such as depth of field. [Moore, Jefferies 2009] propose
using screen space buffers to classify the screen as a way to
optimize MSAA deferred shading and deferred shadow rendering.
We extend these works to provide a general framework for screen
classification. We introduce a method for decomposing the
into tiles and define a number of useful tile classification criteria.
We show how this approach can be used to reduce the
of the lighting pass in deferred shading and to optimize a
range of rendering and post processing effects.

We describe how our approach has been implemented in
Split/Second, a major racing game developed at Disney’s
Rock Studio We provide details of the implementation for
Microsoft Xbox® 360 and Sony PlayStation
platforms.

Our Approach

In our approach we divide the screen into tiles. For each tile we
aim to apply lighting shaders that contain the minimum locally
required complexity. To achieve this we first apply a full screen
classification pass which determines which components of our
lighting calculation are required in each screen tile. This
classification pass can be carried out using either the GPU or the
CPU or a combination of the two. We use a

Space Classification for Efficient Deferred Shading

Balor Knight, Matthew Ritchie, George Parrish, Jeremy Moore

Disney Interactive Studios

 (b) (c)
oft shadow classification, (c) Sky classification, (d) MSAA edge class

Deferred shading is an increasingly popular technique for video
game rendering. In the standard implementation a geometry pass

other properties to a geometry buffer
buffer) before a lighting pass is applied as a screen space

operation. Deferred shading is often combined with deferred
shadowing where the occlusion values due to one or more lights

hadow buffer. The universal
application of complex shaders to the entire screen during the
shadow and light passes of these techniques can contribute to poor
performance. A more optimal approach would take different

scene. For example we
would prefer to only apply expensive shadow filtering to known
shadow edges. However this typically involves the use of
dynamic branches within shaders which can lead to poor
performance on current video game shading hardware.

Synergistic Processing Unit
3 to categorize areas of the screen

efficiency in post processing
effects such as depth of field. [Moore, Jefferies 2009] propose

ng screen space buffers to classify the screen as a way to
MSAA deferred shading and deferred shadow rendering.

We extend these works to provide a general framework for screen
decomposing the screen

classification criteria.
to reduce the complexity

of the lighting pass in deferred shading and to optimize a further
and post processing effects.

has been implemented in
major racing game developed at Disney’s Black

implementation for the
PlayStation® 3 hardware

In our approach we divide the screen into tiles. For each tile we
aim to apply lighting shaders that contain the minimum locally
required complexity. To achieve this we first apply a full screen
classification pass which determines which components of our

each screen tile. This
using either the GPU or the
We use a palette of screen

attributes from which the classification pass selects a combination
for each tile. In our example case the attributes include
limited to: “sky”, “MSAA edge
edge”. The presence of these attributes in a
determined by analyzing the G
deferred shadow mask.

For each tile the collected screen attributes are
a shader ID. This determines the shader
process the tile during the lighting pass.
shaders used in the lighting pass
of screen attributes. For large
avoided by grouping our screen attributes and defining more than
one pass per tile. In our example we
the shader ID fits conveniently into an 8
The shaders themselves can be generated by pre
uber-shader during shader compilation.

Once the shader ID for each tile has been calculated we generate
an index buffer with which to submit a
shader found in our scene. In our implementation this index buffer
generation phase is carried out on the CPU and
the GPU submission and rendering.

The optimum tile size to trade off average tile complexity agai
vertex cost can vary according to
For Split/Second we found that
good balance. Vertex processing cost
simple aggregation of adjacent tiles with the same shader ID.

We have adapted the technique for
platforms. On the PlayStation
GPU by carrying out part of the
The SPU is also used to generate
Xbox® 360 we make use of the Procedural Synthesis feature
(XPS) to optimally synchronize the CPU submission of draw calls
with the GPU.

References

SWOBODA, M. 2009.

Processing on PlayStation®3.
Conference 2009.

MOORE, J., JEFFERIES, D.
Split/Second. Advanced Real
Graphics and Games –

Deferred Shading

Balor Knight, Matthew Ritchie, George Parrish, Jeremy Moore

(c) (d)

classification zoomed to show tile structure.

attributes from which the classification pass selects a combination
or each tile. In our example case the attributes include but are not

edge”, “sun-facing”, and “soft shadow
. The presence of these attributes in any tile can be

the G-buffer and the screen space

screen attributes are combined to create
a shader ID. This determines the shader that will be used to

tile during the lighting pass. The maximum number of
s used in the lighting pass is 2n where n is the total number

For large n combinatorial complexity can be
by grouping our screen attributes and defining more than

In our example we use 8 screen attributes so that
conveniently into an 8-bit render target channel.

haders themselves can be generated by pre-processing an
shader during shader compilation.

or each tile has been calculated we generate
dex buffer with which to submit a single draw call for each

found in our scene. In our implementation this index buffer
ied out on the CPU and synchronized with

the GPU submission and rendering.

trade off average tile complexity against
cost can vary according to hardware and scene complexity.

we found that a tile size of 4x4 pixels gave a
Vertex processing cost is further reduced by a

adjacent tiles with the same shader ID.

technique for our different target hardware
. On the PlayStation® 3 we move work away from the

by carrying out part of the classification pass on the SPU.
to generate the final index buffers. On the

360 we make use of the Procedural Synthesis feature
optimally synchronize the CPU submission of draw calls

 Deferred Lighting and Post
Processing on PlayStation®3. Game Developers

 2009. Rendering Techniques in
Advanced Real-Time Rendering in 3D

– SIGGRAPH 2009.

